Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Expert Rev Clin Pharmacol ; 15(11): 1327-1341, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2247914

ABSTRACT

INTRODUCTION: Small interfering RNA (siRNA) has emerged as a powerful tool for post-transcriptional downregulation of multiple genes for various therapies. Naked siRNA molecules are surrounded by several barriers that tackle their optimum delivery to target tissues such as limited cellular uptake, short circulation time, degradation by endonucleases, glomerular filtration, and capturing by the reticuloendothelial system (RES). AREAS COVERED: This review provides insights into studies that investigate various siRNA-based therapies, focusing on the mechanism, delivery strategies, bioavailability, pharmacokinetic, and pharmacodynamics of naked and modified siRNA molecules. The clinical pharmacology of currently approved siRNA products is also discussed. EXPERT OPINION: Few siRNA-based products have been approved recently by the Food and Drug Administration (FDA) and other regulatory agencies after approximately 20 years following its discovery due to the associated limitations. The absorption, distribution, metabolism, and excretion of siRNA therapeutics are highly restricted by several obstacles, resulting in rapid clearance of siRNA-based therapeutic products from systemic circulation before reaching the cytosol of targeted cells. The siRNA therapeutics however are very promising in many diseases, including gene therapy and SARS-COV-2 viral infection. The design of suitable delivery vehicles and developing strategies toward better pharmacokinetic parameters may solve the challenges of siRNA therapies.


Subject(s)
COVID-19 , Humans , RNA, Small Interfering/pharmacology , COVID-19/therapy , SARS-CoV-2 , Genetic Therapy
2.
Prescrire International ; 31(236):100-102, 2022.
Article in English | EMBASE | ID: covidwho-1912842

ABSTRACT

Three new drugs, all based on messenger RNA or small interfering RNA technology, represented a major therapeutic advance in 2021. But the bigger picture is that most of the new authorisations that advanced patient care were adaptations of existing drugs. And that more than half of this year's new authorisations were not advances, and in fact about one-tenth represented a step backwards compared to existing options.

3.
Adv Drug Deliv Rev ; 184: 114236, 2022 05.
Article in English | MEDLINE | ID: covidwho-1757033

ABSTRACT

The success of the messenger RNA-based COVID-19 vaccines of Moderna and Pfizer/BioNTech marks the beginning of a new chapter in modern medicine. However, the rapid rise of mRNA therapeutics has resulted in a regulatory framework that is somewhat lagging. The current guidelines either do not apply, do not mention RNA therapeutics, or do not have widely accepted definitions. This review describes the guidelines for preclinical biodistribution studies of mRNA/siRNA therapeutics and highlights the relevant differences for mRNA vaccines. We also discuss the role of in vivo RNA imaging techniques and other assays to fulfill and/or complement the regulatory requirements. Specifically, quantitative whole-body autoradiography, microautoradiography, mass spectrometry-based assays, hybridization techniques (FISH, bDNA), PCR-based methods, in vivo fluorescence imaging, and in vivo bioluminescence imaging, are discussed. We conclude that this new and rapidly evolving class of medicines demands a multi-layered approach to fully understand its biodistribution and in vivo characteristics.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/therapy , Humans , RNA, Messenger/metabolism , RNA, Small Interfering , Tissue Distribution , mRNA Vaccines
4.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 11.
Article in English | MEDLINE | ID: covidwho-1079674

ABSTRACT

2020 has been an extremely difficult and challenging year as a result of the coronavirus disease 2019 (COVID-19) pandemic and one in which most efforts have been channeled into tackling the global health crisis. The US Food and Drug Administration (FDA) has approved 53 new drug entities, six of which fall in the peptides and oligonucleotides (TIDES) category. The number of authorizations for these kinds of drugs has been similar to that of previous years, thereby reflecting the consolidation of the TIDES market. Here, the TIDES approved in 2020 are analyzed in terms of chemical structure, medical target, mode of action, and adverse effects.

SELECTION OF CITATIONS
SEARCH DETAIL